## Hamiltonian properties of products of graphs and digraphs by Gunter Schaar

By Gunter Schaar

**Read Online or Download Hamiltonian properties of products of graphs and digraphs PDF**

**Best mathematics_1 books**

This publication examines the ideals, attitudes, values and feelings of scholars in Years five to eight (aged 10 to fourteen years) approximately arithmetic and arithmetic schooling. essentially, this e-book makes a speciality of the improvement of affective perspectives and responses in the direction of arithmetic and arithmetic studying. moreover, it sounds as if scholars boost their extra detrimental perspectives of arithmetic in the course of the center institution years (Years five to 8), and so the following we be aware of scholars during this serious interval.

- The Theory of Matrices
- Method of Partition of Networks with Fixed Degrees of Nodes and Network Flows
- Fuzzy decision making through trade-off analysis between criteria - Lee, Kuo
- Modules over endomorphism rings
- Fundamentals of Mathematics, Volume I: Foundations of Mathematics: The Real Number System and Algebra
- Prospective Mathematics Teachers’ Knowledge of Algebra: A Comparative Study in China and the United States of America

**Additional info for Hamiltonian properties of products of graphs and digraphs**

**Example text**

This result, Theorem 1 and Theorem 18(a) are the only known conditions which are both necessary and sufficient for some of the five classical products to be traceable or Hamiltonian. For a connected graph G a closed edge-sequence c is called a cover o f G iff each v e rt ex of G is contained in c. A q- cover of G is a cover c of G passing each ve rt ex of G exactly q times, q = 1,2,... ) An (i^,. ^ is passed exactly once. Every cover c of G can be uniquely decomposed with respect to a fixed vertex i into (i)-covers c p of some induced sub graphs G S!

K}. J) . (i 1 ,3")} with i = i* and f j J e E(G2 ). (i,J*))-paths of length 1 ’ , 3 * 1 * * |V(G)I - |V(Hp )| + 1, no inner ve rt ex of which is belonging to Hp . ) Thus we obtain ( Q ^ S ^ - p a t h s of length 1 with |V(Hp )l + 1 < 1 * I V ( G )1 - 1. N o w we consider the case 1 = | V ( H p )|. Obviously, because of |V(Hp )| i | V(G)| - 1 there is a subgraph H q 6 of G which is different from Hp . d* )} with f J . J ’/ C E(G2 ). ,Sf . For a c e rt ai ny U€ |l ,. ,s -1} we have K i . J M i .

Then G ^ G g S H G t-cover c # of iff (*) there is a and there is an s-cover c" of G 2 , such that for all vertices i € V ( G ^ ) , j € V ( G 2 ) and integers m i m 1 ^2, n ^ n ^ 2 the following implication holds: If m X i(4 ) k- « 1 z r=ni i(4) . 17) then Z. k=l l(c’) * K Z r=l l(c" ) r . 18) (Id »Jd ) • in G ^ x G 2 where d - st. 17) for any vertices i € V(G^) and J € V ( G 2 ). 19) . From (2*16) and (2*19) it follows that the 1-cover c of G ^ x g 2 must pass the ve rt ex (i»j) at least twice» which is a contradiction.